Stereoselective Preparation Of Tri And Tetracyclic Amines As Potential Intermediates In Aspidosperma Alkaloid Synthesis

Assia Azzouzi, Bertrand Perrin, Marie-Eve Sinibaldi, Jean-Claude Gramain*
Laboratoire de Chimie des Substances Naturelles, associé au CNRS, Universite Blaise Pascal 63177 Aubiere, France.

Catherine Lavaud

Laboratoire de Pharmacognosie, associe au CNRS, Universite de Reims, Faculte de Pharmacie 51096 Reims, France.

Key Words: imines, reduction, stereochemistry

Abstract: The stereoselectivity of the reduction of tri and tetracyclic imines 3 and 4, easily prepared from hexahydrocarbazolone 5 is studied.

In our program directed toward the synthesis of Aspidosperma alkaloids framework (e.g. aspidospermidine), $1,2,3$ most of the key intermediates were obtained by reduction of unsaturated compounds such as enaminoketones 1, nitrones 2, imines 3 and 4 to the corresponding amines (Scheme 1). This reduction step is crucial because it establishes definitively the stereochemistry at the $\mathbf{C}-21^{4}$ position.

aspidospermidine

1

2

3

4

Scheme 1

Herein, we report a systematic study of the reduction of tricyclic model imines 3 and tetracyclic compound 45 to saturated amines. Tricyclic imines 3 a (B / C cis) and 3 b (B/C) trans were easily prepared by amination of hexahydrobazolones 5 followed by in situ reduction using $\mathrm{NaBH}_{3} \mathrm{CN}^{6}$ to the corresponding unstable amines which were immediately acylated and characterized as their acetamido derivatives 6a/7a and $6 \mathrm{~b} / 7 \mathrm{~b}$ (Scheme 2).

Reduction of compound 3a(B/C cis) followed by N-acylation led to a mixture of two products $6 a / 7 a$ in a $65 / 35$ ratio (84% yield). Their structure and stereochemistry were deduced from NMR spectra $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ and ROESY experiment). Since no ROE was observed between $\mathrm{H}-21$ and $\mathrm{H}-2$ or $\mathrm{H}-9$ we deduced that both compounds $6 a^{7}$ and $7 a^{7}$ adopt a conformation in which the C ring is a flatened chair with the acetamido func-
tion in a pseudo-equatorial position. These results were confirmed by molecular modelling and calculations.
The reduction and acylation of compound 3 b (B / C trans) led to a mixture of $\mathbf{6 b}$ and 7 b (60% yield) in a $93 / 7$ ratio. The ROE between $\mathrm{H}-21$ and $\mathrm{H}-9$ in the major product $6 b^{7}$ and the lack of a ROE in this compound between $\mathrm{H}-21$ and $\mathrm{H}-2$ is in agreement with a chair C ring bearing an axial acetamido function. In compound $\mathbf{7 b}^{7}$ H-21 and H-2 showed a ROE which confirms the equatorial stereochemistry of the acetamido group.

Scheme 2

Preparation of imine 4 from hexahydrocarbazolone 5c on a larger scale than previously described 5 failed : Reduction of enamide 8 led invariably to a mixture of the desired imine 4 together with amines 9 and 10 , the result of further reduction of 4 (Scheme 3).

Scheme 3

We therefore developed an alternative method to prepare the imine 4. Thus, nitrile 11 was reduced to amine after protection of the carbonyl group. Deprotection was followed by spontaneous cyclization into imine 4 (Scheme 4).

Scheme 4

Chemical reduction of imine 4 (Table 1) provided the amines 9^{8} and 10^{8} in good yield with a preponderance of the cis amine. Their ratio was determined by quantitative ${ }^{13} \mathrm{C} N M R$. LiAlH_{4} (run 1) led to a $70 / 30$ ratio of com-pounds $9 / 10$ (quantitative yield). Attempts to improve this ratio using hindered hydride such as L-selectride or Superhydride failed. In fact no reduction was observed, due to the steric hindrance. Chemical reduction with $\mathrm{NaBH}_{3} \mathrm{CN}$ (run 5) and catalytic reduction (run 13) led to interesting results : chemical yields were good to quantitative and only the amine of natural configuration (B / C cis and E / C cis) was obtained. The outcome of dissolving metal reduction was of particular interest. The reduction using Na in EtOH failed and had to be performed at higher temperature in $n \mathrm{BuOH}$ (run 11). It led to a mixture of amines 9 and 10 in a $88 / 12$ ratio. These conditions are thought to allow thermodynamic control ${ }^{9}$ and show the greater stability of the natural isomer.

Table 1. Reduction of imine 4

Run	Condiuons	Temp	Yield (\%)	amine cis 9/amine trans10
1	LiAlH_{4}, THF	reflux	quantitative	70/30
	L-selectride, THF	rt to reflux	no reaction	
3	Superhydride, THF	rt to reflux	no reaction	
4	DIBAL, toluene	$-78^{\circ} \mathrm{C}$ to reflux	no reaction	
5	$\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MeOH} / \mathrm{HCl}$	rt	75\%	100/0
6	$\mathrm{NaBH}_{4}, \mathrm{MeOH}$	ft	58\%	67/33
7	KBH_{4}, MeOH	reflux	71%	77/23
8	PtO , EtOH	π	quantitative	59/41
9	$\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$	$1 t$	no reaction	
10	$\mathrm{Na}, \mathrm{EtOH}$	rt to reflux	no reaction	
11	$\mathrm{Na}, \mathrm{nBuOH}$	reflux	75\%	88/12
12	$\mathrm{Na}, \mathrm{NH}_{3}$	$-40^{\circ} \mathrm{C}$	60\%	debenzylated imine
13	Ni Raney, EtOH	rt°	quantitative	100/0
14	BH_{3}, THF	$0^{\circ} \mathrm{C}$ to it	no reaction	
15	9 -BBN, THF or Toluene	rt to reflux	no reaction	

The rather unstable amines 9 and 10 were well characterized by their NMR ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra. The assignment of thecis ortrans stereochemistry was verified unambigously by $2 \mathrm{D} \mathrm{H}^{\mathrm{l}}-\mathrm{H}^{\mathrm{l}}$ ROESY NMR. In amine $9 \mathrm{H}-21$ appears at $\delta 3.10 \mathrm{ppm}$ as a doublet of doublet ($\mathrm{J}=9$ and 5 Hz) and has a ROE with $\mathrm{H}-2$ at δ 3.50 ppm which is resolved as a triplet ($\mathrm{J}=4 \mathrm{~Hz}$). No ROE between $\mathrm{H}-21$ (doublet of doublet) at $\delta 3.2 \mathrm{ppm}$ (J $=12$ and 4 Hz) and the $\mathrm{H}-2$ multiplet at $\delta 3.3-3.5 \mathrm{ppm}$ was observed in amine 10 indicating a trans E / C ring junction.

In conclusion, dissolving metal reduction led to the thermodynamic product and gave mainly the cis amine. $\mathrm{NaBH}_{3} \mathrm{CN}$ and catalytic hydrogenation ($\mathrm{H}_{2}, \mathrm{Ni}$ Raney) led stereospecifically with excellent yield to the amine with the natural configuration showing the validity of this synthetic approach.

References

1 - Dufour, M. ; Gramain, J.-C. ; Husson, H.-P. ; Sinibaldi, M.-E. ; Troin, Y. Tetrahedron Lett. 1989, 30, 3429 -3432.
2 - Dufour, M. ; Gramain, J.-C. ; Husson, H.-P. ; Sinibaldi, M.-E. ; Troin, Y. J. Org. Chem. 19\%0, 55, 5483-5490.
3 - Benchekroun, N. ; Dugat, D. ; Gramain, J.C. Tetrahedron Lett. 1992, 33, 4001-4004.
4 - We have adopted for all compounds the biogenetic numbering of Aspidosperma alkaloids : Le Men J. and Taylor, W.I. Experientia 1965, 21, 508-510.
5 - (a) Gramain, J.-C. ; Husson, H.-P. ; Troin, Y. Tetrahedron Lett. 1985, 26, 2323-2326 ; (b) Gramain, J.-C. ; Husson, H.-P. ; Troin, Y. J. Heterocyclic Chem. 1988, 25, 201-203.

6 - (a) Borch. R.F. ; Bernstein. M.D. ; Dust, H.D. J.Am. Chem. Soc. 1971,93, 2897-2904; (b) Hutchins, R.O. ; Natale, N.R. Org. Prep. Proc. Int. 1979, 11, 201-246.

7 - $\quad 6$: oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl} 3,300 \mathrm{MHz}) \delta=1.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3) ; 1.60-2.10(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17$ and $\mathrm{H}-20) ; 2.10(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right) ; 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CONCH}_{3}\right) ; 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 3.12(\mathrm{dd}, \mathrm{H}, \mathrm{J}=2$ and $3 \mathrm{~Hz}, \mathrm{H}-2) ; 4.78$ (dd, $1 \mathrm{H}, \mathrm{J}=11$ and 4 $\mathrm{Hz}, \mathrm{H}-21) ; 6.50(\mathrm{~d}, \mathrm{IH}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-12) ; 6.65(\mathrm{t}, \mathrm{JH}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-10) ; 6.92(\mathrm{~d}, \mathrm{IH}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-9) ; 7.10(\mathrm{t}, \mathrm{lH}, \mathrm{J}=8$ $\mathrm{Hz}, \mathrm{H}-11$). IR (CCl4) $1650 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{~Hz}\right) \delta 18.1(\mathrm{C}-17), 18.9(\mathrm{C}-16), 22.7\left(\mathrm{CH}_{3} \mathrm{CO}\right), 23.1(\mathrm{C}-20)$, 26.4 (CH3), 33.6 (NCH_{3}), 47.9 (C-7), 55.3 (C-21), 74.9 (C-2), 107.4 (C-12), 117.7 (C-10), 125.1 (C-9), 128.2 (C-11), $133.4(\mathrm{C}-8), 153.9(\mathrm{C}-13), 172.2$ (CO). Anal Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{20}: \mathrm{C}, 74.96 ; \mathrm{H}, 8.88 ; \mathrm{N}, 10.29$. Found : C, 74.69 ; H, 8.85 ; N, 10.46 .
7a : $\mathrm{F}=140^{\circ} \mathrm{C}$ (ether). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH} 3) ; 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.40-1.60(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-16$ and $\mathrm{H}-20) ; 1.60-1.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-17) ; 1.85-2.05(\mathrm{~m}, \mathrm{HH}, \mathrm{H}-20) ; 2.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH} 3) ; 2.82(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$, $\mathrm{H}-2) ; 2.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CONCH}_{3}\right) ; 3.52(\mathrm{dd}, \mathrm{lH}, \mathrm{J}=11$ and $3 \mathrm{~Hz}, \mathrm{H}-21) ; 6.52(\mathrm{~d}, \mathrm{HH}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-12) ; 6.68(\mathrm{t}, \mathbf{1 H}, \mathrm{J}=8 \mathrm{~Hz}$, $\mathrm{H}-10$) ; $6.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-9) ; 7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-11) . \mathrm{RR}\left(\mathrm{CCl}_{4}\right) 1642 \mathrm{~cm}{ }^{-1} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (CDCl3, 100 MHz) $17.2\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{COCH}_{3}\right), 21.9(\mathrm{C}-17), 22.6(\mathrm{C}-16), 26.8(\mathrm{C}-20), 31.3\left(\mathrm{CONCH}_{3}\right), 33.7\left(\mathrm{NCH}_{3}\right), 48.3(\mathrm{C}-7), 59.7$ (C-21), 76.4 (C-2), 108.9 (C-12), 119.1 (C-10), 123.1 (C-9), 128.2 (C-11), 135.9 (C-8), 152.2 (C-13), 172.6 (CO). Anal Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C} 74.96 ; \mathrm{H}, 8.88 ; \mathrm{N}, 10.29$. Found : C, 74.16; $\mathrm{H}, 8.49 ; \mathrm{N}, 9.09$.
6b : oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.65-2.10(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-17$ and $\mathrm{H}-16) ; 2.06(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right) ; 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CONCH}_{3}\right) ; 2.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 3.0(\mathrm{dd}, \mathrm{lH}, \mathrm{J}=12$ and $4 \mathrm{~Hz}, \mathrm{H}-2) ; 5.35(\mathrm{dd}, \mathrm{lH}, \mathrm{J}=5$ and 7 $\mathrm{Hz}, \mathrm{H}-21) ; 6.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-8) ; 6.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-10) ; 7.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-5) ; 7.12(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$, H-11). IR (CCl4) $\left.1630 \mathrm{~cm}^{-1}{ }^{13} \mathrm{C}-\mathrm{NMR}^{(\mathrm{CDCl}} 3,100 \mathrm{~Hz}\right) \delta 20.6(\mathrm{C}-16$ and $\mathrm{C}-20), 22.3\left(\mathrm{COCH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 23.6$ (C-17), 34.1 (NCH 3), 47.6 (C-7), 52.3 (C-21), 70.8 (C-2), 108.7 (C-12), 119.2 (C-10), 122.3 (C-9), 126.7 (C-11), 136.3 (C-8), 152.2 (C-13), 171.3 (CO). Anal Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.96 ; \mathrm{H}, 8.88 ; \mathrm{N}, 10.29$. Found : C, 74.58; H, 8.78 ; N, 10.37 .
7b : oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3) ; 1.45-1.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16$ and $\mathrm{H}-20) ; 1.80-2.20(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-16, \mathrm{H}-17$ and $\mathrm{H}-20$) ; $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ; 2.45$ (dd, $\mathrm{IH}, \mathrm{J}=12$ and $3 \mathrm{~Hz}, \mathrm{H}-21$) ; 2.66 (s, 3H, NCH3) ; 4.02 (dd, $1 \mathrm{H}, \mathrm{J}=12$ and $3 \mathrm{~Hz}, \mathrm{H}-2) ; 6.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-12) ; 6.78(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-10) ; 7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-9) ; 7.20$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-11) . \mathrm{IR}\left(\mathrm{CCl}_{4}\right) 1630 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{~Hz}\right) 818.5\left(\mathrm{CH}_{3}\right), 22.8(\mathrm{C}-16), 23.5(\mathrm{COCH} 3)$, 23.8 ($\mathrm{C}^{*}-17$), $28.5\left(\mathrm{C}^{*}-20\right), 30.4\left(\mathrm{CONCH}_{3}\right), 34.1\left(\mathrm{NCH}_{3}\right), 48.0(\mathrm{C}-7), 62.4(\mathrm{C}-21), 76.5(\mathrm{C}-2), 1 \mathrm{O} .5(\mathrm{C}-12), 118.6$ (C-10), 122.6(C-9), 127.5 (C-11), 137.5 (C-8), 152.5 (C-13), 171.6 (CO).
8 - $\quad 9$: oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.30-1.70(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-17$ and $\mathrm{H}-16) ; 1.90-2.21$ (m, 2H, H-6) : 3.10 (dd, $1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}$ and $\mathrm{J}=5 \mathrm{~Hz}, \mathrm{H}-21) ; 3.20-3.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5) ; 3.5(\mathrm{t}, \mathrm{IH}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{H}-2) ; 3.90(\mathrm{~s}, \mathrm{IH}, \mathrm{NH}) ; 4.25$ (AB spectra, $2 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \Delta \mathrm{v}=85 \mathrm{~Hz}, \mathrm{NCH} 2 \mathrm{Ph}) ; 6.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-12) ; 6.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-10) ; 7.00(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-11) ; 7.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-9) ; 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}$ aromatic). IR (CHCl 3$) 3420 \mathrm{~cm}^{-1} .13 \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 75 \mathrm{~Hz}\right) \delta 18.2(\mathrm{C}-20), 23.6(\mathrm{C}-17), 27.3(\mathrm{C}-16), 35.0(\mathrm{C}-6), 43.7(\mathrm{C}-5), 50.6(\mathrm{NCH} 2 \mathrm{Ph}), 53.2(\mathrm{C}-7), 62.0(\mathrm{C}-$ 21), 67.6 (C-2), 107.8 (C-12), 118.1 (C-10), 121.1 (C-9), 127.7 (C-11), 136.5 (C-8), 138.8 (C-ipso), 151.0 (C-13). 10 : oil. ${ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta=1.1-1.4(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16$ and $\mathrm{H}-17$) ; 1.5-1.8 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17$ and $\mathrm{H}-20$) ; $1.9-2.1(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-20) ; 3.2$ (dd, $\mathrm{HH}, \mathrm{J}=12$ and $4 \mathrm{~Hz}, \mathrm{H}-21$) ; 3.3-3.5 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-2$) ; 4.3 (AB spectra, $\left.2 \mathrm{H}, \mathrm{J}=15 \mathrm{~Hz}, \Delta v=88 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right) ; 6.4(\mathrm{~d}, \mathrm{lH}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-12) ; 6.8(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-10) ; 6.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; 7.1$ (t, 1H, J $=8 \mathrm{~Hz}, \mathrm{H}-11$) ; 7.2-7.4 (m, 5H, H aromatic) ; $7.5(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-9 \text {). } \mathrm{IR} \text { (} \mathrm{CHCl})_{3} 3425 \mathrm{~cm}^{-1} .13 \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CDCl}_{3}, 75 \mathrm{~Hz}$) $\delta 21.7$ (C-20), 24.3 (C-16), 37.9 (C-17), 42.4 (C-5), 48.9 ($\mathrm{NCH}_{2} \mathrm{Ph}$), 54.1 (C-7), 61.6 (C-21), 68.0 (C2), 107.9 (C-12), 118.0 (C-10), 124.3 (C-9), 128.0 (C-11), 131.2 (C-8), 138.1 (C-ipso), 150.6 (C-13).

9 - Augustine, R. L. in "Reduction" ; Marcel Dekker, Inc., New York, 1968, chapter 2 ; House, H.O. "Modern Synthetic Reactions" ; Benjamin, W.A., Inc., Menlo Park, California, 1972, chapter 3.
(Received in France 11 June 1993; accepted 8 July 1993)

